The Chairman of the Joint Chiefs of Staff (CJCS) issued a mandate to begin SAASM GPS receiver deployment as of October 2002 and with full enforcement as of October 2006.

What is SAASM?
SAASM (Selective Availability Anti-Spoof Module) is the new generation military GPS receiver technology, providing a new security architecture and crypto key management infrastructure. Receiver hardware and software assets are protected by a tamper-resistant security module on the GPS receiver board. Crypto key security is protected by a new unclassified Black-Key infrastructure. Having unclassified hardware and key logistics greatly reduces the complexities of deploying military GPS.

What is Direct P(Y) acquisition?
The pre-SAASM GPS receiver technology requires the Civil C/A-Code signal to facilitate the acquisition of the crypto P(Y)-Code signal. In addition to a properly keyed receiver, the C/A signal provides the receiver with precision time and other parameters needed to acquire the P(Y) signal. The Hot Start acquisition functionality bypasses this need, able to come on-line in the absence of the Civil, in-the-clear C/A signal. This is a vital function of the SAASM receiver technology, because in today's tactical warfare scenarios, the C/A signal may not be available in the local area of conflict.

Why use GPS SAASM in time/frequency product applications?
Many existing communications and data networks used by the government and DoD receive precision time and frequency from GPS-C/A-aided synchronization products. GPS-C/A signals/receivers can be easily jammed or degraded, causing degradation or loss of synchronization and communications, unacceptable in vital applications. The use of GPS-SAASM receivers prevents such loss of synchronization.

Although GPS-SAASM receivers are “controlled items,” they are not classified. Only the U.S. Government and its NATO partners are authorized to use such military receivers.

Are the systems upgradeable to M-Code?
Yes, when available.

Notes:
(a) After 48 hours of continuous operation.
(b) 2σ (95.5% probability).
(c) Detailed specifications for various frequency output modules: see “Option Module User Manual”.
(d) SAASM receiver restrictions: U.S. Government policy restricts the sale of Precise Positioning Service (PPS) equipment to those authorized by the U.S. Department of Defense. Non-U.S. authorized users must purchase PPS equipment through the Foreign Military Sales (FMS) process.
CommSync II and CommSync II-D Redundant Modular Time & Frequency

FEATURES

- **Accuracy**
 - Time: <50ns Peak (UTC)
 - <25ns RMS
 - Frequency: 1E-12
- **GPS Receivers**
 - Standard Civil C/A-Code (L1) Frequency
 - multi-GNSS
 - SAAHM Military C/A-P(Y)-Codes (L1, L2)
- **User interface**
 - Standard RS-232
 - Keypad/display
 - Ethernet I/O
 - (Telnet, SNMP)
 - Zyfer Monitor™ GUI
- **Time Server**
 - SNTP, NTP
 - PTPv2 IEEE 1588-2008
- **Standard Outputs**
 - 1PPS (front panel)
 - 10MHz (front panel)
 - 13 output slots (CS II)
 - 8 output slots (CS II-D)
 - Gigabit Ethernet with Fiber Options available
- **External synchronization and time inputs**
- **Automatic switchover in the event of a failure**
- **Expandable with distribution shelves**
- **Increased reliability due to fewer system components**
- **Shorter MTTR due to “hot swappable” spare modules**
- **Lower field maintenance costs due to less system complexity**
- **Lower training costs due to commonality across family**

CommSync II Model 385 Modular Time and Frequency System

- 3U Chassis
- Redundant and Field Replaceable GTF/DTF, I/O, Output, Power Modules
- 13 Rear Expansion Slots for Option Modules
- Field Upgradable to M-Code when available

CommSync II-D Model 407 Modular Time and Frequency System

- 2U Chassis
- Redundant and Field Replaceable GTF/DTF, I/O, Output, Power Modules
- 8 Rear Expansion Slots for Option Modules
- Field Upgradable to M-Code when available
Specifications

Output Specifications (GTF Front Panel)

After 24 hours of GPS locked operation, fixed antenna location, antenna delays entered.

Frequency Accuracy (a)

<table>
<thead>
<tr>
<th></th>
<th>Rubidium OSC</th>
<th>Quartz OSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Hour average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locked to GPS</td>
<td><1E-12</td>
<td><1E-12</td>
</tr>
<tr>
<td>Holdover(a) – first 24 hours</td>
<td><5E-11</td>
<td><1E-10</td>
</tr>
</tbody>
</table>

Time Accuracy to UTC, for calibrated units (b)

<table>
<thead>
<tr>
<th></th>
<th>Rubidium OSC</th>
<th>Quartz OSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locked to GPS</td>
<td><50ns Peak</td>
<td><50ns Peak</td>
</tr>
<tr>
<td>Holdover(a) – first 24 hours</td>
<td><3us</td>
<td><7us</td>
</tr>
</tbody>
</table>

Short-Term Stability (c) typical

<table>
<thead>
<tr>
<th>Allan Deviation</th>
<th>Rubidium OSC</th>
<th>Quartz OSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sec</td>
<td><3E-11</td>
<td><1E-11</td>
</tr>
<tr>
<td>10 sec</td>
<td><1E-11</td>
<td><1E-11</td>
</tr>
<tr>
<td>100 sec</td>
<td><3E-12</td>
<td><1E-10</td>
</tr>
</tbody>
</table>

Phase Noise (c) typical

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Standard</th>
<th>Low Noise 5 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hz</td>
<td><-90 dBc/Hz</td>
<td><-100 dBc/Hz</td>
</tr>
<tr>
<td>10 Hz</td>
<td><-105 dBc/Hz</td>
<td><-130 dBc/Hz</td>
</tr>
<tr>
<td>100 Hz</td>
<td><-125 dBc/Hz</td>
<td><-150 dBc/Hz</td>
</tr>
<tr>
<td>1 kHz</td>
<td><-135 dBc/Hz</td>
<td><-158 dBc/Hz</td>
</tr>
</tbody>
</table>

Input/Output (GTF Front Panel)

1) 1PPS, 50 Ω, TTL level, SMA, External Sync input
2) RS-232 I/O, DE-9 Connector
3) 10MHz, 50 Ω, TTL level, SMA connector
4) 1PPS, 50 Ω, TTL level, SMA connector

SAASM Option

1) Key Load connector
2) Hot Start connector
3) Zeroize button

Power Options

CommSync II

- AC input (115-230 VAC) 100 to 240 VAC, 150 Watts max., 47-63 Hz
- DC input (24 VDC) 18-36 VDC, 150 Watts max.
- DC input (48 VDC) 36-76 VDC, 150 Watts max.
- DC input (12 VDC) 11.5-18 VDC, 150 Watts max.
- DC input (28 VDC) 22-29 VDC, 150 Watts max.

CommSync II-D

- AC input (115/230 VAC) 100-120 and 200-240 VAC, 130 Watts max., 47-63 Hz
- DC input (24 VDC) 18-36 VDC, 100 Watts max.
- DC input (48 VDC) 36-76 VDC, 100 Watts max.

GPS Receiver Options

Standard GPS Receiver - Civil C/A-Code

- Type: 8-12 channel, independent tracking
- Frequency: 1575.42 MHz (L1)
- Code: C/A only
- Acquisition Time (b): Warm Start: <2 min. Cold Start: <20 min.

Optional multi-GNSS Receiver Available

- Type: GPS/GLONASS/BeiDou/QZSS/Galileo

Upgradable to M-Code

SAASM GPS Receiver

- Type: Military P(Y)-Code
- MPE-S GB-GRAM: 12 channel, independent tracking
- FORCE 22E MRU: 24 channel, independent tracking
- Frequency: 1575.42 MHz and 1227.60 MHz (L1 & L2)
- Code: C/A and P(Y)
- Acquisition Time (b): Warm start: <2 min. Hot / Cold Start: Dependent on accuracy of initialization parameters from PLGR or DAGR handheld military GPS receivers, or other initialization devices

Key Load Interface: DS-102

Physical

<table>
<thead>
<tr>
<th>Height</th>
<th>134 mm (5.25") (3U) - CS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>87 mm (3.50") (2U) - CS II-D</td>
</tr>
<tr>
<td>Depth</td>
<td>381 mm (15") - CommSync II</td>
</tr>
<tr>
<td>Weight</td>
<td>25lb. Max - CommSync II</td>
</tr>
</tbody>
</table>

Panel Color

- Black Satin finish (Front Panel)

Environmental

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Operating: 0°C to 50°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of Change</td>
<td>10°C/Hour</td>
</tr>
<tr>
<td>Storage</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5% to 95%, non-condensing</td>
</tr>
<tr>
<td>Altitude</td>
<td>Operating: -60m to 4000m</td>
</tr>
<tr>
<td></td>
<td>Storage: -60m to 9000m</td>
</tr>
</tbody>
</table>

Specifications subject to change without notice.
FEATURES

• Accuracy
 – Time: <50ns Peak (UTC) <25ns RMS
 – Frequency: 1E-12
• GPS Receivers
 – Standard Civil C/A-Code (L1) Frequency
 – multi-GNSS
 – SAASM Military C/A-Code P(Y)-Codes (L1, L2)
• User interface
 – Standard RS-232
 – Keypad/display
• Zyfer Monitor™ GUI

Time Server

– SNTP, NTP
– PTPv2 IEEE 1588-2008

Standard Outputs

– 1PPS
– 10MHz
– 8 output slots (GSync II)
– 4 output slots (GSync)
– Gigabit Ethernet with Fiber Options available

Multi-purpose Embedded Ethernet supports:

– NTP / PTP
– SSH / Telnet
– IPv4 / IPv6
– SNMP
– NMEA

External synchronization and time inputs

GSync II Model 402 Modular Time and Frequency System

- 2U Chassis
- Chassis Level 1PPS In/Output, Ethernet with NTP/PTP, RS-232, 10MHz
- 8 Rear Expansion Slots for Option Modules
- Factory Upgradable to M-Code when available

GSync Model 391 Modular Time and Frequency System

- 1U Chassis
- Chassis Level 1PPS In/Output, Ethernet with NTP/PTP, RS-232, 10MHz
- 4 Rear Expansion Slots for Option Modules
- Factory Upgradable to M-Code when available
Specifications

Output Specifications
After 24 hours of GPS locked operation, fixed antenna location, antenna delays entered.

Frequency Accuracy (a)
24 Hour average
Locked to GPS <1E-12 <1E-12
Holdover(a) – first 24 hours <5E-11 <1E-10

Time Accuracy to UTC, for calibrated units(b)
Locked to GPS <50ns Peak <50ns Peak
Holdover(a) – first 24 hours <3us <7us

Short-Term Stability(c) typical
(Allan Deviation) Rubidium OSC Quartz OSC
1 sec <3E-11 <1E-11
10 sec <1E-11 <1E-11
100 sec <3E-12 <1E-10

Phase Noise(c) typical
Rubidium OSC Quartz OSC
1 Hz <-90 dBc/Hz <-100 dBc/Hz
10 Hz <-105 dBc/Hz <-130 dBc/Hz
100 Hz <-125 dBc/Hz <-150 dBc/Hz
1 kHz <-135 dBc/Hz <-158 dBc/Hz

Input/Output (Rear Panel)
(1) 1PPS, 50 Ω, TTL level, BNC, External Sync input
(1) RS-232 I/O, DE-9 Connector
(1) GPS Antenna Connector, TNC
(1) 10MHz, 50 Ω, TTL level, BNC
(1) 1PPS, 50 Ω, TTL level, BNC
(1) RJ-45 10 / 100 Ethernet

SAASM Option (front panel)
(1) Key Load connector
(1) Hot Start connector
(1) Zeroize button

Power Options
GSync II
• AC input (115/230 VAC) 100-120 and 200-240 VAC, 130 Watts max., 47-63 Hz
• DC input (24 VDC) 18-36 VDC, 100 Watts max.
• DC input (48 VDC) 36-76 VDC, 100 Watts max.
• DC input (12 VDC) 11.5-18 VDC, 150 Watts max.

GSync
• AC input (115-230 VAC) 115-230 VAC, 100 Watts max., 47-63 Hz
• DC input (24 VDC) 18-36 VDC, 100 Watts max.
• DC input (48 VDC) 36-76 VDC, 100 Watts max.
• DC input (12 VDC) 11.5-18 VDC, 150 Watts max.
• DC input (28 VDC) 22-29 VDC, 150 Watts max.

GPS Receiver Options
Standard GPS Receiver - Civil C/A-Code
Type 8-12 channel, independent tracking
Frequency 1575.42 MHz (L1)
Code C/A only
Acquisition Time(b) Warm Start: <2 min.
Cold Start: <20 min.

Optional multi-GNSS Receiver Available
Type GPS/GLONASS/BeiDou/QZSS/Galileo

Upgradable to M-Code
SAASM GPS Receiver(d) - Military P(Y)-Code
Type MPE-S GB-GRAM: 12 channel, independent tracking
FORCE 22E MRU: 24 channel, independent tracking
Frequency 1575.42 MHz and 1227.60 MHz
(L1 & L2)
Code C/A and P(Y)

Acquisition Time(b)
– Warm start: <2 min.
– Hot / Cold Start: Dependent on accuracy of initialization parameters from PLGR or DAGR handheld military GPS receivers, or other initialization devices

Key Load Interface: DS-102

Physical
Height 87 mm (3.50") (2U) - GSync II
44 mm (1.75") (1U) - GSync
Width 438 mm (17.25") - GSync II
448 mm (17.65") - GSync
Mounts in 19" EIA rack
Depth 381 mm (15") - GSync II / GSync
Weight 15lb. Max - GSync II
10lb. Max - GSync
Panel Color Black Satin finish (Front Panel)

Environmental
Temperature Operating 0°C to 50°C
Rate of Change 10°C/ Hour
Storage -40°C to +85°C
Relative Humidity 5% to 95%, non-condensing
Altitude Operating -60m to 4000m
Storage -60m to 9000m

Specifications subject to change without notice.

Visit www.fei-zyfer.com

Optional Accessories
• L1 Antenna Kit
• L1/L2 Antenna Kit
• Antenna Cables
• Antenna Inline Amplifier
• Fiber Optic Antenna Link

Additional information on our website:
• GSync User Manual
• Option Module User Manual
• A list of detailed specifications of more than 200 time and frequency plug-in modules and network I/O modules
Modular Construction Provides the Ultimate in Configuration Versatility.

Design Concept

Customer requirements range from just one or two standard frequency (10 MHz) and/or time (1PPS) outputs to hundreds of outputs of various frequencies and time codes. Additional consideration must be given to:

- Redundancy
- Hot-swappable and hitless plug-in modules
- Phase coherent and/or aligned output signals
- Remotely upgradable software
- Remote monitoring and control
- Holdover performance in case of loss of GPS
- Various harsh environments

In response to such diverse demands, FEI-Zyfer integrated these design considerations and developed a family of 19" rack-mountable, modular products, 1U, 2U, and 3U high, to satisfy requests for:

- Redundant power supplies, both AC and DC
- Fully redundant GTF (GPS receiver with integrated OXCO or Rb oscillator)

Applications include:

- Fully redundant Master Clock Systems for Satellite Ground Systems, Gateways, or Mobile SatCom Terminals
- Primary Reference Source for Telecom and Secure Communications and Data Networks
- Radar, C4ISR, and Air Traffic Control Systems
- Military Test Ranges and Calibration Laboratories, etc.

Most applications can be satisfied with a vast selection of hot-swappable Plug-In Modules, allowing easy and economical product configurations for GSync and CommSync II systems.

CommSync II Output Capability Diagram – Master/Slave Configuration

![Diagram of CommSync II Output Capability Diagram – Master/Slave Configuration](image-url)
Commsync II

Family of available Plug-In Modules:
- Power Supplies (DC and/or AC)
- Standard and Special Frequencies (1MHz to >100MHz)
- Time Codes (IRIG, HQ, PTTI) and Pulse Rates from 1PPS to 10M PPS
- Clock Rates (programmable) from 1PPS to 54M PPS
- E1/T1 for Telecom Synchronization at Stratum 1
- Standard GPS C/A, multi-GNSS, and Military SAASM Receivers
- System Management and Control via RS-232 and/or Ethernet I/O (Telnet, SSH, and SNMP)
- Network Synchronization (NTPv4, PTPv2, IEEE-2008)
- Simple software upgrades via Ethernet

For special applications, FEI-Zyfer will ruggedize the product, perform ESS testing, calibrate to UTC or design new modules to meet customer’s needs.

Visit www.fei-zyfer.com
SAASM – Military GPS Receiver
The Chairman of the Joint Chiefs of Staff (CJCS) issued a mandate to begin SAASM GPS receiver deployment as of October 2002 and with full enforcement as of October 2006.

What is SAASM?
SAASM (Selective Availability Anti-Spoof Module) is the new generation military GPS receiver technology, providing a new security architecture and crypto key management infrastructure. Receiver hardware and software assets are protected by a tamper-resistant security module on the GPS receiver board. Crypto key security is protected by a new unclassified Black-Key infrastructure. Having unclassified hardware and key logistics greatly reduces the complexities of deploying military GPS.

What is Direct P(Y) acquisition?
The pre-SAASM GPS receiver technology requires the Civil C/A-Code signal to facilitate the acquisition of the crypto P(Y)-Code signal. In addition to a properly keyed receiver, the C/A signal provides the receiver with precision time and other parameters needed to acquire the P(Y) signal. The Hot Start acquisition functionality bypasses this need, able to come on-line in the absence of the Civil, in-the-clear C/A signal. This is a vital function of the SAASM receiver technology, because in today’s tactical warfare scenarios, the C/A signal may not be available in the local area of conflict.

Why use GPS SAASM in time/frequency product applications?
Many existing communications and data networks used by the government and DoD receive precision time and frequency from GPS-C/A-aided synchronization products. GPS-C/A signals/receivers can be easily jammed or degraded, causing degradation or loss of synchronization and communications, unacceptable in vital applications. The use of GPS-SAASM receivers prevents such loss of synchronization.

Although GPS-SAASM receivers are “controlled items,” they are not classified. Only the U.S. Government and its NATO partners are authorized to use such military receivers.

Are the systems upgradeable to M-Code?
Yes, when available.

Notes:
(a) After 48 hours of continuous operation.
(b) 2σ (95.5% probability).
(c) Detailed specifications for various frequency output modules: see “Option Module User Manual”.
(d) SAASM receiver restrictions: U.S. Government policy restricts the sale of Precise Positioning Service (PPS) equipment to those authorized by the U.S. Department of Defense. Non-U.S. authorized users must purchase PPS equipment through the Foreign Military Sales (FMS) process.